Theoretical and experimental studies of Resistive Plate Chamber (RPC) detector

<u>K. Doroud¹</u>, Y. Pezeshkian², A. Moshaii³, J. Rahighi⁴, H. Afarideh¹, M. Bahmanabadi²

- 1) Amirkabir university of Technology, Physics department
- 2) Sharif university of Technology, Physics department
- 3) IPM
- 4) Van de Graff Laboratory, Nuclear Research Center

Contents :

- LHC project and CMS experiment
- CMS Muon system and RPC project
- RPC detector; principles and applications
- RPC experimental studies
- Theoretical simulation of RPC
- Conclusion

LHC project at CERN

Overall view of the LHC experiments.

The Large Hadron Collider (LHC)

Com	pact	Mu	оп	Sol	enoi	d
and the second second	Leave a constant			The second s	COMPLEX CONTRACTOR	1000

	Beams	Energy	Luminosity
LEP	e+ e-	200 GeV	10 ³² cm ⁻² s ⁻¹
	P P	14 TeV	10 ³⁴
LHC	Pb Pb	1312 TeV	10 ²⁷

CMS: Compact Muon Solenoid

CMS Collaboration

36 Nations, 160 Institutions, 2008 Scientists and Engineers (November 2003)

CMS Muon system

The CMS Muon detector is made of 3 different sub-detectors:

- Drift Tubes (DT) in the barrel region.
- Cathode Strip Chambers (CSC) in the endcap region
- Resistive Plate Chambers (RPC) as trigger detectors in both the barrel and the endcap.

CMS MUON SYSTEM: Barrel & Endcap

<u>RPC detector; principles and</u> <u>applications</u>

- two resistive (2-5x10¹⁰ ohm.cm) parallel plates.
- 2 mm length gas gap.
- high voltage and ground electrodes.
- Readout strips

RPC detector; principles and applications

Modes of operation:

- 1. Streamer
- 2. Avalanche
- RPCs originally conceived to work on streamer mode (up to ~100 Hz/cm²).
- In LHC experiments : a large neutron and gamma-ray background, producing high hit rate up to ~1000 Hz/cm².
- To overcome this difficulty, RPCs will be operated in avalanche mode, Using lower electric field.
- Transferring part of amplification from gas to front-end electronic.

RPC detector; principles and applications

Nowadays RPCs are used in many fields :

- LHC at CERN: ALICE, ATLAS, CMS
- Extensive Air Shower (EAS) physics
- X-ray imaging, UV imaging, Positron Emission Tomography (PET), ...
- As a part of other instruments: like BESIII spectrometer, ...

RPC experimental studies

Cosmic ray telescope, Preliminary activities.

Static pressure difference for CO2 vs HV

Theoretical simulation of RPC

- Monte carlo procedure (Fortran programming)
- gas mixtures :
- C2F4H2/i-C4H10/SF6 (96.7/3/0.3)
 Ar/CO2 (50/50)
 Ar/i-C4H10 (50/50)
- 120 GeV Muon and 50 kV/cm electric field.

Simulation procedures:

- **1.** Cluster creation
- Average number of clusters per unit length.
- Number of electrons per cluster.

$$P(x) = \frac{1}{\lambda} e^{-x/\lambda}$$

Townsend and attachment coefficient for C2F4H2/i-C4H10/SF6 as calculated

- 2. Calablation of the ray alagabencion stants all gas mixinge
- > Townsenderdangerander velenederts. ERN.

calculated using "Magboltz" program developed at CERN.

Simulation procedures:

3. Avalanche development, calculated by means of Reigler formula (NIM,500(2003) 144-162).

$$P(n, x) = \begin{cases} k \frac{\bar{n}(x) - 1}{\bar{n}(x) - k}, & n = 0\\ \bar{n}(x) (\frac{1 - k}{\bar{n}(x) - k})^2 (\frac{\bar{n}(x) - 1}{\bar{n}(x) - k})^{n - 1}, & n > 0 \end{cases}$$

where

$$\bar{n}(x) = e^{(\alpha - \eta)x}, \quad k = \frac{\eta}{\alpha}.$$

4. Using central limit theorem for high N(t).

5. Induced signals

• Calculation of induced signal by means of "Ramo theorem" and "weighting field":

$$i(t) = \frac{E_{\rm w} \cdot v}{V_{\rm w}} e_0 N(t) \qquad \qquad \frac{E_{\rm w}}{V_{\rm w}} = \frac{\varepsilon_r}{2b + d\varepsilon_r}$$

• The induced charge is calculated by integrating induced current through the gap.

Event

600

500

• A certain electronic threshold q_{thr} (80 fC).

Conclusions

- The RPC group activities during last year were reported.
- Experimental part; gas leakage test and High voltage test has been performed.
- Efficiency test is in progress.
- Theoretical simulation (SM): (for three gas mixtures)
- Induced signal strongly depends on the type of gas mixture.
- Streamer characteristic of argon based gas mixtures.
- Development of SM by space charge effect is in progress.

