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The following analysis models the climber as an object supported by a pure 
force.  It neglects to take into account the rotary moment of inertia of the drive train, or 
any bearing or rolling resistance losses which will eat up some of the available power.

The first page is devoted to various constants needed in the analysis.  The first 
calculation looks at the power required to lift the climber at constant velocity.  
Instantaneous acceleration is assumed.  I am using this document as a scratch pad to 
organize my analysis of the design of a construction ribbon climber.

Re 6.378 10
6× m⋅:= Radius of the Earth (altitude = 0)

G 6.67 10
11−⋅

m
3

sec
2

kg⋅
⋅:= Newton's gravitational constant

Me 5.9788 10
24⋅ kg⋅:= Mass of the Earth

ω 7.2929
10

5−

sec
⋅:= Angular speed of Earth

r Re Re 100 10
3⋅ m⋅+, Re 10

8
m⋅+..:= Range variable for 

altitude from center of 
earth

ac r( )
Me G⋅

r
2

r ω2⋅−:= Acceleration felt by ribbon climber as function 
of altitude

ac Re( ) 9.769
m

s
2

= g at equator (accounting for earth's spin)
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g
Me G⋅

Re
2

:= g at poles where there is no centripetal force

g 9.803
m

s
2

= Common value for g

g ac Re( )−

g
100⋅ 0.346= Percentage difference in weight between pole 

and equator

Graph of acceleration felt by climber (ratio with earth normal gravity) vs 
altitude (kilometers) from Earth's surface at the Equator
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The acceleration is expressed as a ratio of the acceleration to earth normal 
gravity at the poles.
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Detail view of above graph of acceleration felt by climber (ratio with 
earth normal gravity) vs altitude (kilometers) from Earth's surface at the 

Equator (curve stopped at 104 km up)
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ac Re 10
8

m⋅+



 0.531−

m

s
2

=

Maximum negative acceleration at 
end of ribbon

ac Re 10
8

m⋅+





g
0.054−=

Finding the altitude where the acceleration is zero:

r Re 4 10
7⋅ m⋅+:= Guess value for root of function
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Now to calculate the power required to lift the climber at the design speed

ac r( )

g
0.143=

Climber accelerationac r( ) 1.4
m

s
2

=

Altitude of 10,000 kilometersr Re 10
7

m⋅+:=

ac r( )

g
0.743=

Climber accelerationac r( ) 7.287
m

s
2

=

Altitude of 1,000 kilometersr Re 10
6

m⋅+:=

ac r( )

g
0.966=

Climber accelerationac r( ) 9.468
m

s
2

=

Altitude of 100 kilometersr Re 10
5

m⋅+:=

Some example values of the ratio of climber acceleration to g:

This is the altitude of Geosynchronous orbitAlt 3.579 10
4× km=

Alt root ac r( ) r,( ) Re−:=

Root finding function to see where a=0root ac r( ) r,( ) 4.217 10
7× m=
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Range variable for 
altitude from center of 
earth

r Re Re 100 10
3⋅ m⋅+, Re 10

8
m⋅+..:=

mc 900 kg⋅:= The mass of the first climber is 900 kg.

vc 200
km
hr

⋅:= The original design velocity of the climber

Pc r( ) mc ac r( )⋅ vc⋅:= Power required to raise the climber

Graph of Power (kiloWatts) vs Altitude up the ribbon (kilometers) for 
Constant Speed case
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Find power required at surface of Earth:

Pc Re( ) 488.467kW= Pc Re( ) 655.045hp= Power required at earth level
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Total Energy required to get to GEOEt 1.211 10
4× kW hr⋅=

Et
Re

Re Alt+

rmc ac r( )⋅
⌠
⌡

d:=

ac r( )
Me G⋅

r
2

r ω2⋅−:=

Range variable for 
altitude from center of 
earth

r Re Re 100 10
3⋅ m⋅+, Re 10

8
m⋅+..:=

To find the total energy required for the trip to ribbon end:

The altitude above which the power required is less than 100 kW is ~7500 km.

Alt100kW 7.489 10
3× km=

Alt100kW z Re−:=

z 1.387 10
4× km=z Find r( ):=

100 kW⋅ mc ac r( )⋅ vc⋅=

Given

guess valuer Re 1 10
4⋅ km⋅+:=

At what altitude is the power required equal to or less than 100 kW?
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The average energy my house uses in a month is 1500 kW-hrs.  How many months 
of my house energy is required?

month 30 day⋅:= Defining a month for MathCAD

Et

1500 kW⋅
hr

month
⋅

8.075 month=

The time required to get to GEO (no acceleration time included):

t
Alt
vc

:=

t 7.456day=

Eight months of the energy used by my house must be applied within 7.5 
days

The energy you get from out past GEO (which must be dissipated in the braking 
system somehow):

Eout
Re Alt+

Re 105km+

rmc ac r( )⋅
⌠
⌡

d:=

Eout 4.914− 10
3× kW hr⋅= Energy to be dissipated from GEO to ribbon end

How long does the trip to the end of the ribbon take at constant speed?

Ttrip
10

5
km⋅

200
km
hr

⋅
:=
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Ttrip 20.833day= Time to end of ribbon assuming instantaneous 
acceleration and deceleration

Assume that the power is fixed at 100 kW and calculate the speed of the 
climber for constant power running

The height range variable stops before GEO because with constant power, as 
the force dragging the climber down decreases, the velocity increases to infinity.  It is 
not physically possible for a climber to roll on the ribbon at some speed beyond a few 
hundred km/hr because of stress limitations in the wheels and acceleration limits 
imposed by the safety factor on the tensile strength of the ribbon.  This graph just 
shows what is theoretical without reference to physical limits.

r Re Re 100 km⋅+, Re 35000km+..:=

P 100 kW⋅:=

vc r( )
P

mc ac r( )⋅
:=

Graph of possible speed of climber vs height up ribbon 
for constant power (100kW)
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Same range variable for heightr Re Re 100 10
3⋅ m⋅+, Re 33000km+..:=

What is the initial possible speed of the climber?  (Again, no acceleration limits 
applied.)

Alt Re 5⋅− 3.9 10
3× km=

Just short of GEORe 5⋅ 3.189 10
4× km=

Above ~7500 km the climber hits 200 km/hr and as long as the power doesn't fall off 
faster, the speed could be higher.

During a solar storm, the radiation belt extends out five times the radius of the earth 
from just above the surface.  We want to make it through this belt as fast as we can.

Altmaxv 7.489 10
3× km=

Altmaxv q Re−:=

q 1.387 10
4× km=

Temporary variable to find the heightq Find r( ):=

200
km
hr

P
mc ac r( )⋅

=

Given

Guess value to seed the find functionr Re 7000km+:=

Find the altitude at which the climber hits 200 km/hr
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ac r( )
Me G⋅

r
2

r ω2⋅−:=

vc r( )
P

mc ac r( )⋅
:= vc Re( ) 40.944

km
hr

=

Assume the trip starts with zero velocity at the Earth's surface.  What 
constant acceleration is required until the climber gets to 200 km/hr at 
7500 km up?

d Alt100kW:= Renaming the variable for the height up the ribbon to 200 km/hr

d 7.489 10
3× km=

vmax 200
km
hr

⋅:=

aave
1
2

vmax
2

d
⋅:= Equation for average acceleration given distance and final v

aave 2.061 10
4−×

m

s
2

=

This acceleration eats up very little factor of safety 
in ribbon strength

aave
g

2.102 10
5−×=

The time it takes to get to 7500 km up with constant acceleration of aave is:

Tacons
vmax
aave

:= Tacons 3.121 day=
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r Re Re 100 km⋅+, Re 35000 km⋅+..:=

The range variable for height up the ribbon from the center of earth in this calculation 
stops before GEO because the possible acceleration equation has a singularity at 
GEO.

Calculate the possible acceleration from the constant power curve of 
velocity:

Ttot1 9.016 day=

Ttot1 Tacons t2+:=Total time to GEO with acceleration:

t2 5.896day=t2
Alt d−
vmax

:=

Time at 200km/hr out to GEO after acceleration:

t 7.456day=Total time to GEO at constant velocity (no accel):

∆t 1.56 day=

∆t Tacons Tvcons−:=

Time added to trip to GEO from acceleration time:

Tvcons 1.56 day=

Tvcons
d

vmax
:=

The time it takes to go 7500 km at 200 km/hr constant speed is:
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P 100 kW⋅:= Constant power

ac r( )
Me G⋅

r
2

r ω2⋅−:= Acceleration dragging on climber

vc r( )
P

mc ac r( )⋅
:=

The possible acceleration of the climber under constant power is determined from 
the relation a=v*dv/dx.

aposs r( ) vc r( )
r
vc r( )d

d
⋅:=

Graph of possible acceleration of climber (ratio with g) vs 
height up ribbon (km) for constant power (100kW)
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The average acceleration calculated above (2.102e-5 ratio) is higher than the lowest 
acceleration ratio shown here.  As shown below, the average constant acceleration 
as previously calculated causes the power required to exceed 100 kW.  I need to 
calculate the power required as a function of time (instead of as a function of height 
up ribbon like all previous calculations) for constant acceleration case.

Calculating the power required for the first three days of climbing at constant 
acceleration:

t 0 sec⋅ 10 sec⋅, Tacons..:= range variable for time to 7500 km up

h t( )
1
2

aave⋅ t
2⋅





Re+:= Height up ribbon now a function of time

V t( ) aave t⋅:= Initial velocity is zero

ac t( )
Me G⋅

h t( )( )
2

h t( ) ω2⋅−:= Drag acceleration expressed as f(t)

Atot t( ) ac t( ) aave+:= Drag force plus inertial force to lift climber

Ptot t( ) mc Atot t( )⋅ V t( )⋅:= Power required to overcome drag and accelerate

I am examining the case of starting the trip up the ribbon with constant 
acceleration because it is one of the easiest to deal with and conceptually common.  
Another assumption in this calculation that is not physically realizable with a real 
ribbon and climber is the step function constant acceleration that I'm using here.  The 
step function of acceleration has a singularity in its derivative at the instant of the 
beginning of acceleration and the instant of the acceleration ending (the point of 
constant velocity).  This third derivative of position is called "jerk" and in a real 
climber, acceleration must also follow a curve that starts at zero at time zero and 
smoothly increases to the desired value.
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Each of these calculations adds a level of complexity not seen in the previous 
one and the pattern I'm seeing is that each bit of added reality is making the trip out 
to GEO take longer and longer.  I haven't even added the effect of the mass moment 
of inertia of the drive train, which will also slow the climb down.  It takes power to 
accelerate the wheels up to speed.

I have not figured out yet how to deal with the trip from GEO to the end of the 
ribbon.  Clearly the climber must decelerate before it gets to the end of the ribbon.  It 
must also brake the increasing acceleration due to the centrepital force.

Graph of power (kW) required to lift climber at constant 
acceleration vs time (hrs) up ribbon to 7500 km
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Graph of power (kW) required to lift climber at constant 
acceleration vs height (km) up ribbon to 7500 km
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These two graphs above show that constant acceleration at the previously 
calculated rate causes the power required to be higher than 100 kW, and the problem 
occurs below 5000 km, just as would be predicted by the possible acceleration curve 
above.  I will recalculate the acceleration taking longer to accelerate up to 200 km/hr to 
see how low the average acceleration has to be to keep the power at or below 100 
kW. 

 
The way to lower the acceleration will be to choose a higher altitude to reach 

200 km/hr by multiplying the original 7500 km by a factor.  I will manually tune the factor 
to get the desired result.

f 2.12:= Tunable factor to find new height to reach 200 km/hr

d f 7500⋅ km⋅:= Putting a multiplier into the old height to 200 km/hr

d 1.59 10
4× km=

vmax 200
km
hr

⋅:= Desired maximum velocity of 200 km/hr
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range variable for time to d km upt 0 sec⋅ 10 sec⋅, Tacons..:=

The new lower acceleration adds another day and three-quarters to the trip to GEO.  
Next I will show the graphs of power vs time and power vs altitude.

Ttot2 Ttot1− 1.752 day=Ttot1 9.016 day=Ttot2 10.769 day=

Ttot2 Tacons t2+:=Total time to GEO with new lower acceleration:

t2 4.144day=t2
Alt d−
vmax

:=

Time at 200km/hr out to GEO after acceleration:

Tacons 6.625 day=Tacons 159 hr=

Tacons
vmax
aave

:=

The time it takes to get to d km up at constant acceleration is:

This is significantly lower than the previous value
aave

g
9.9 10

6−×=

aave 9.706 10
5−×

m

s
2

=

Finding a new, lower average accelerationaave
1
2

vmax
2

d
⋅:=
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h t( )
1
2

aave⋅ t
2⋅





Re+:= height up ribbon now a function of time

V t( ) aave t⋅:=

ac t( )
Me G⋅

h t( )( )
2

h t( ) ω2⋅−:=

Atot t( ) ac t( ) aave+:=

Ptot t( ) mc Atot t( )⋅ V t( )⋅:=

Graph of power required to lift climber at constant acceleration 
vs time up ribbon, reaching 200 km/hr at a higher altitude (lower 

average acceleration)
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Graph of power required to lift climber at constant acceleration 
vs height up ribbon, reaching 200 km/hr at a higher altitude 

(lower average acceleration)
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Ptot 58 hr⋅( ) 99.997kW=

This curve shows that once the climber peaks out at the 100 kW point, it could 
begin to accelerate more because the drag begins to drop off more quickly.  You 
need to start at low acceleration given the 100 kW limitation, but the acceleration can 
be cranked up above 2000 km up the ribbon.

The initial acceleration is small enough that it cannot produce a problem for 
the safety factor of the ribbon.  This may not be true in the higher acceleration region 
midway up the ribbon, or values possible from GEO out to the end of the ribbon.  I 
need to develop an expression for the safety factor remaining in the tensile strength 
of the ribbon for a climber at any arbitrary altitude and acceleration.  The way to see 
why acceleration is important is to remember how the cross-sectional area of the 
ribbon fibers was calculated using a safety factor of two.  The ribbon calculation 
shown in the book starts with a climber not moving, just hanging on the ribbon at the 
surface of the earth.  If that climber were accelerating upward at one g, it would look 
twice as heavy to the ribbon and the safety factor on the tensile strength of the 
ribbon would be completely used up. 
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Another thing these calculations have made abundantly clear is that constant 
power/variable speed running requires programming the motion of the climber with 
some kind of polynomial acceleration curve to achieve close to constant power 
running.  (This might be handled by a feedback loop on the real climber, instead of 
an open loop controller.)  The singularities in the curves indicate that perfect 
constant power running is not possible (at least in a system with no rotary mass 
moment of inertia.)  I will have to expand on this work by developing a candidate 
climber wheel assembly and including the effect of the rotary mass moment of 
inertia.

Once I have a curve for the torque required to achieve a near-constant 
power running, I can then determine if the axial gap electric motors I am 
considering have this torque/speed capability.  This will allow me to see how many 
stages of reduction/speed increasing are required in the transmission.

Stress calculations on the wheels will determine what is the maximum speed 
the climber can obtain.

I also want to look at how quickly the laser power will diminish with altitude to 
see if that will put additional limits on the speed and acceleration.

I am trying to write a complete system simulation model that will take into 
account all kinds of electrical and mechanical effects, but I need to do more 
preliminary work before attempting this.

Looking at maximum acceleration from a ribbon structural point-of-view:

The ribbon cross-section is sized at every point to create a constant safety 
factor of 2 everywhere with a climber at the earth's surface hanging on the ribbon but 
not moving.  Also, by free-body diagrams it can be shown that the climber only affects 
the tension in the ribbon below it, not above it.  The goal in this calculation is to 
calculate the allowed acceleration of the climber as gravity drops off with altitude, 
assuming that the combination of the weight and the acceleration must always equal 
the original weight of the climber with no acceleration.  This will be compared with the 
possible acceleration calculated above, and with constant acceleration profiles to 
better refine the time to GEO.  The speed limit of the climber will be increased to the 
maximum of electric powered vehicles on earth, 500 km/hr.

r Re Re 100 km⋅+, Alt..:= Alt 3.579 10
4× km= Altitude of GEO

aclimber r( )
G Me⋅

Re
2

Re ω2⋅−
G Me⋅

r
2

r ω2⋅−






−:=
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Graph of maximum acceleration of the climber as the drag due 
to gravity drops off with altitude
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1
2

:= velocity of the climber as a function of 
the new acceleration curve
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Graph of the velocity of the climber accelerating by the 
maximum acceleration curve as the drag due to gravity drops 

off with altitude
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We see from this graph that the maximum acceleration curve very quickly accelerates 
the climber past any practical velocity.

ac r( )
Me G⋅

r
2

r ω2⋅−:= Drag acceleration expressed as f(r)

Atot r( ) ac r( ) aclimber r( )+:= Drag force plus inertial force to lift climber

Ptot r( ) mc Atot r( )⋅ V r( )⋅:= Power required to overcome drag and 
accelerate by the maximum allowed 
acceleration curve above
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Graph of the power required to accelerate the climber by the 
maximum acceleration curve as the drag due to gravity drops 

off with altitude
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This graph shows that the limitation on acceleration comes from the available laser 
power, not the allowed acceleration due to the safety factor on the stress in the ribbon.  
Since the power available is nowhere near that required to accelerate the climber by 
the maximum acceleration allowed by the ribbon, then the climber cannot accelerate at 
that rate.

If the velocity is limited to 500 km/hr, then

vel r( ) V r( ) V r( ) 500
km
hr

⋅≤if

500
km
hr

⋅





otherwise

:=
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Graph of the velocity of the climber accelerating by the 
maximum acceleration curve, but limited to a maximum speed 

of 500 km/hr
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Once the speed hits maximum, the acceleration goes to zero.  Only the 
gravitational drag remains.

Atot r( ) ac r( ) aclimber r( )+ vel r( ) 500
km
hr

⋅<if

ac r( ) otherwise

:=

aclimber Re 100 km⋅+( ) 0.301
m

s
2

= Peak acceleration just before maximum 
speed 

Ptot r( ) mc Atot r( )⋅ vel r( )⋅:= Power required to overcome drag and 
accelerate
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Graph of the Power Required for Maximum Allowed 
Acceleration of the Climber up to 500 km/hr
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It is clear that what limits the speed of the climber is not the maximum acceleration 
given by the safety factor of the ribbon, but the power available from the laser.  A 
megawatt laser will be available for the cargo climbers.  If the small construction 
climbers could handle the power, they could accelerate at the maximum rate allowed 
by the ribbon.

Conclusion:
If the power to the climbers is limited to the 100 kW range, the time to GEO is 

much longer than it would be if the climbers had enough power to accelerate at the 
maximum rate allowed by the safety factor of the ribbon.
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Detail of the Graph of the Power Required for Maximum 
Allowed Acceleration of the Climber up to 500 km/hr
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